Vertrieb 4.0 – Industrielle Services

Vertrieb 4.0

Industrielle Services – Online Akademie

Laut dem VDMA wird ein Rückgang der realen Maschinenproduktion um 2% für 2020 prognostiziert.
Andererseits werden den industriellen After-Sales-Services riesige Potentiale zugeschrieben.
Nach einer Untersuchung des Beratungshauses McKinsey sind hier EBIT Margen von durchschnittlich 25% möglich.

Für die Industriellen Unternehmen gilt es nun die Goldminen zu entdecken und umzusetzen.
Die Digitalisierung in den Vertriebs- und Serviceprozessen (Vertrieb 4.0) spielt hierbei eine entscheidende Rolle.

Zwei Beispiele:
Bernhard Rösch von ALLMATIC-Jakob Spannsysteme GmbH wächst zukünftig profitabel mit digitalen Serviceangeboten und Stefan Grenzebach, Geschäftsführer der Posehl Mittelstandbeteiligung GmbH bewertet das Software- und Servicegeschäft in der Industrie als stabilen Wachstumgarant.

Gemeinsam mit Petra Scherer von Scherer Value Consulting lade ich Sie daher recht herzlich zu unserem kostenlosen Online Seminar –
“Serviceorganisation der Industrie: Goldminen für Ihren Unternehmenserfolg” ein.

Einfach anmelden unter:
www.vertrieb40.de

Noch mehr zum Thema finden Sie in dem Video

https://youtu.be/yliMfFtXS3E

Weiterlesen

FDI Parts Shop

FDI Parts Shop

Erste Vorstellung am cDay

Der FDI Parts Shop ist ein Produkt für alle Industrieunternehmen, die im Online-Ersatzteilvertrieb durchstarten möchten. Der FDI Parts Shop basiert auf der OXID eSales B2B Enterprise Edition, und wurde durch Funktionen speziell für den Ersatzteilvertrieb erweitert.

Wir stellen den FDI Parts Shop zum ersten Mal auf dem cDay der TID Informatik GmbH, am 22. und 23. Mai 2019, vor. Dort ist besonders die TID CATALOGcreator-Integration eine wichtige Funktion.

Wenn Sie auch beim cDay dabei sind, stellen wir Ihnen unseren Parts Shop gern dort vor.
Weitere Informationen folgen zeitnah auf unserer Website. Zuvor finden Sie eine Zusammenfassung zum Parts Shop in unserem Flyer.

Download Flyer

Weiterlesen

Relaunch ACREDO BAU

ACREDO BAU

Immobilienkauf ist Vertrauenssache

In Februar 2019 ging ACREDO BAU mit seiner neuen Website online.

Der Aufbau und das Design wurden im Zuge des Relaunchs an das Unternehmen angepasst.
ACREDO BAU steht für Vertrauen, Zuverlässigkeit und Offenheit.
Genau das spiegelt auch das klare Design wieder. Nähe und Vertrauen schafft die Seite insbesondere durch die Bildsprache und die Möglichkeit zur direkten Kontaktaufnahme mit dem jeweiligen Ansprechpartner.

Zu dem wichtigsten technischen Feature gehört die Anbindung das Immobilienportal immoscout24.de. Die Integration ist für die User unsichtbar und fügt sich perfekt in das Gesamterscheinungsbild ein.

Werfen Sie gern selbst einen Blick darauf.

https://www.acredo-bau.de/

 

Weiterlesen

Shopprojekt Volvo Car Switzerland

Volvo Car Switzerland

“Moose” unser Liebling aus dem neuen Shop

Im Dezember vergangenen Jahres startete Volvo Car Switzerland mit seiner ersten Kampagne “Adventskalender” seine Online Vermarktung mit Hilfe des neuen Shops.

Dank der intensiven Zusammenarbeit war es möglich, bereits 8 Wochen nach dem Kickoff Workshop, pünktlich zum ersten Dezember, online zu gehen.

Die Zielsetzung des Shops besteht darin die Sichtbarkeit und die Verfügbarkeit der hochwertigen und liebevollen Lifestyle- und Zubehörprodukte von Volvo Schweiz zu erhöhen.

Volvo präsentiert sich seit Jahren als wachsendes, innovatives und modernes Unternehmen. Auf Basis von OXID eSales wurde aus diesem Anspruch hinaus ein Shop geschaffen, der durch emotionale Ansprache, eine einfache und intuitive Bedienung und viele Features überzeugt. Beispielsweise können Sie sich die Produkte direkt nach Hause oder an Ihren Händler liefern lassen. Natürlich funktioniert der Shop in der Schweiz in den Sprachen deutsch, französisch und italienisch.

Wir freuen uns, wenn Sie sich selbst ein Bild des Shops machen und auch Fan von “Moose” werden!

https://www.volvocars-shop.ch/

 

Weiterlesen

Deep Learning für Empfehlungsdienste

Deep Learning für Empfehlungsdienste – ein neuer Trend?

Im Rahmen seiner Masterarbeit hat sich Mitarbeiter Jörg mit dem Thema Deep Learning für Empfehlungsdienste auseinandergesetzt.
Spannend finden auch wir, und möchten Sie daher in einer kurzen Zusammenfassung über die erlangten Kenntnisse informieren.

Zunächst was bedeutet Deep Learning?

Deep Learning ist Teil des Machine Learnings und nutzt neuronale Netze, sowie große Datenmengen. Durch Analyse der Daten, werden neue Informationen verknüpft und das System lernt – ähnlich dem menschlichen Gehirn.
Jörg: “Anstatt mathematischen Regeln von menschenhand zu folgen,
greifen diese Algorithmen auf ihre selbst erlernten / definierten Methoden zurück. Diese sind für Menschen oft nicht nachvollziehbar.
Theoretisch können diese Algorithmen mit jeglicher Art von Daten umgehen, was sie so Interessant macht. Allerdings wird Deep Learning bisher überwiegend für Einsatzgebiete wie Gesichtserkennung oder Spracherkennung verwendet.”

Wie entstand die Idee Deep Learning für Empfehlungsdienste näher zu betrachten? 

Jörg: “Empfehlungsdienste erlangen immer mehr an Beliebtheit. Viele große Firmen,
vor allem jene, die ihren Hauptgewinn über Onlineportale erzielen, so wie YouTube,
Netflix, Spotify oder Amazon, setzen diese Systeme ein, um ihren Service zu
verbessern. Dies ist der immer weiter anwachsenden Menge an Daten und
Informationen geschuldet. Ein weiteres Forschungsgebiet, das sich in den letzten
Jahren gut entwickelt hat, ist die der Untersuchung von Deep Learning Verfahren.
Da diese Algorithmen gut mit vielen Daten umgehen können stellt sich die Frage, ob
man Deep Learning für Empfehlungsdienste verwenden kann.”

Welche Vor- und Nachteile bietet das Deep Learning in Bezug auf Empfehlungsdienste? 

Klarer Vorteil: Das System lernt selbstständig, was den Aufwand manueller Datenpflege quasi einstellt. Es kann Zusammenhänge erkennen, Objekte erkennen und Informationen extrahieren.
Mögliches Beispiel: Den Wetterbericht mit in das System einfließen lassen. das System würde wahrscheinlich nach einiger Lernzeit zum Wetter passende Produkte vorschlagen, z.B. Sonnencreme.

Der Nachteil an Deep Learning ist, dass es wirklich sehr sehr viele Daten benötigt, um lernen zu können.
Zudem ist die Konfiguration nicht ganz einfach. Wenn es aber läuft, läuft es ausgesprochen gut.

Fazit: 
“Aktuell gibt es noch keine bekannten Projekte mit Deep Learning für Empfehlungsdienste. Die daraus resultierenden Ergebnisse wären aber sicher spannend und auch aufschlussreich. Allerdings wird sich diese Methode nur bei sehr großen Shops mit einem hohen Kundenanteil, sehr vielen Produkten und sehr vielen Bestellungen durchsetzen können.” 
FDI wird dieses zukunftsorientierte Thema natürlich weiter verfolgen.

Weiterlesen